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The buckling of biopolymers is a frequently studied phenomenon The influence of thermal fluctuations on
the buckling transition is, however, often ignored and not completely understood. A quantitative theory of the
buckling of a wormlike chain based on a semiclassical approximation of the partition function is presented. The
contribution of thermal fluctuations to the force-extension relation that allows one to go beyond the classical
Euler buckling is derived in the linear and nonlinear regimes as well. It is shown that the thermal fluctuations
in the nonlinear buckling regime increase the end-to-end distance of the semiflexible rod if it is confined to two
dimensions as opposed to the three-dimensional case. The transition to a buckled state softens at finite tem-
perature. We derive the scaling behavior of the transition shift with increasing ratio of contour length versus
persistence length.
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I. INTRODUCTION

During the last few years, the advent of single molecule
nanomanipulation �1� has allowed one to study the elastic
properties of DNA and other biopolymers under different
physical conditions. In these experiments, the extension of
single molecule versus an applied stretching force is mea-
sured by a variety of techniques including magnetic beads
�2,3�, optical traps �4,5�, microneedles �6�, hydrodynamic
flow �7�, and atomic force microscopy �AFM� �8�. While the
statistical mechanics of unconstrained DNA under tension is
theoretically well understood in the framework of the worm-
like chain model �9–13� the presence of topological con-
straints like supercoiling �14–17� or geometrical constraints
like protein induced kinks and bends �18–22� renders ana-
lytical results more difficult.

Instead of studying the elastic properties of biopolymers
under stretching, mechanical properties can also be studied
by using compression, as long as the chains are smaller than
the persistence length. This has been, for example, used in
experiments targeted to measure the force-velocity relation
of microtubule growth �23� and in determining the force pro-
duced by actin filaments �24� and more recently in analyzing
the force generation by polymerizing of actin bundles �25�.

With the exception of the work of Odijk �26� who consid-
ers a semiclassical evaluation of the partition function in the
linear regime �Fig. 1�a��, i.e., below the buckling transition,
no calculations have been done that consider the nonlinear
regime of external forces above the critical force �Fig. 1�b��.
Furthermore, these calculations are only valid well below the
transition, although it is the behavior close to the transition
on which the force calculations are based. In this paper we
study thermal fluctuations up to the transition in order to
evaluate the scaling of the point of buckling with increasing
length. We note that the concept of a phase transitionlike
sharp transition disappears for finite temperatures, as follows
from the one dimensionality of the system. The transition
region effectively broadens with increasing length at finite
temperatures.

A computer simulation for two- and three-dimensional
configurations shows that the thermal fluctuations decrease
the extension in the buckled state of the polymer in three
dimensions, but increase it in two dimensions �Fig. 4�. In this
paper we show analytically how this happens, by doing a
harmonic perturbation calculation around the buckled state.

As a final note we mention that recently the properties of
DNA, like its stiffness and its sequence-specific pairing, have
been exploited to build different kinds of nanostructures
�27�. In particular a DNA tetrahedron which has been already
synthesized could be the building block of extended nano-
structures �28�. Our calculations can be used to estimate the
forces these structures can withstand.

The paper is organized as follows: We start by describing
the geometry and the model used in Sec. II, briefly treating
its classical elastica solutions in Sec. III. The main body of
the paper consists of a semiclassical calculation of the force
extension behavior for a WLC with finite length and persis-
tence length below and above the Euler transition in Sec. IV.
We extend these calculations to quartic order below the tran-
sition in Sec. V, in order to analyze the change in buckling
transition caused by thermal fluctuations. In Sec. VI we com-
pare our calculations with simulations. In the concluding
Sec. VII we discuss our results in the light of several recent
experiments with stiff biopolymers.

II. THE PARTITION SUM OF A WORMLIKE CHAIN
UNDER COMPRESSION

We model a stiff polymer as a wormlike chain without a
twist degree of freedom. In this case, the polymer configu-
ration is completely characterized by specifying the unit vec-
tor t�s� along the chain, where s is the contour length with
0�s�L, with L being the chain length. When the chain is
submitted to a compressive force F the total energy is
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E�t� = �
0

L �A

2
� dt

ds
�2

+ F · t	ds . �1�

It is customary to write the bending stiffness as A
= lP�T�kBT where lP�T� is the orientational persistence length
and kBT=1 /� the thermal energy; for example, for DNA at
room temperature lP
50 nm �29�. All the statistical proper-
ties of interest can be deduced from the partition function
which is a nontrivial quantity to evaluate because of the local
constraint t2�s�=1 that assures the inextensibility of the
chain

Z =� ��3��t2 − 1�D3�t�e−�E�t�. �2�

This partition function is nothing but the Euclidean path in-
tegral of a quantum particle with mass A, moving on a unit
sphere under the influence of an external constant force. We
are interested in the thermal fluctuations around a “classical
path.” These are easiest to find in polar coordinates. We will
fix the force along the x axis �see Figs. 1�a� and 1�b�� to
avoid the chart singularity at the poles. For notational con-

venience we will choose the polar angle �� �−� /2,� /2�
such that the uncompressed chain has the coordinates
���s� ,��s��= �0,0�. In these coordinates the energy has the
form

E���s�,��s�� = �
0

L �A

2
�cos2 ��s��̇2�s� + �̇2�s��

+ F cos ��s�cos ��s��ds . �3�

We can rewrite the energy in dimensionless variables as

E���s�,	�s�� ª
E���s�,	�s��

kBT

=
1

h
�

0

1 �1

2
�cos2 ��t�	̇2�t� + �̇2�t��

+ G2 cos ��t�cos 	�t��dt ,

�4�
	�t� ª ��tL�, ��t� ª ��tL� ,

where we have introduced the fluctuation parameter

h ª

L

lp

and the coupling strength

G ª L�F
A

.

The square root in the last expression is in fact the reciprocal
of the deflection length �30� of the chain. We are interested in
the small fluctuation regime and use h as an expansion pa-
rameter. The classical path will be the dominant path for h
→0, i.e., in the rod limit, and thermal fluctuations are taken
into account by expanding the partition function in fluctua-
tions around this classical path. The partition function will
now be a path integral in curvilinear coordinates �31�,

Z =� D2��,	��g���e−E���t�,	�t��. �5�

The determinant of the metric in these coordinates is given
by g���=cos2 �. The square root of this determinant, as
present in the path integral measure, formally takes care of
the coordinate independence �chart independence� of the
measure. It can be understood in a time sliced version, al-
though not without subtleties �31�. This measure term can
also be formally exponentiated resulting in an extra energy
term,

Z =� D2��,	�e−E���t�,	�t��−Em���t�,	�t�� �6�

with the measure energy term
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FIG. 1. Force below �a� and above �b� the Euler transition.
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Em���t�� = − ��0��
0

1

dt ln cos ��t� . �7�

The � function in front of the integral should be understood
as being finite using some regularization scheme. The clas-
sical solutions are obtained through the Euler-Lagrange
equations in the next section. We will then proceed by incor-
porating small fluctuations around these classical solutions in
Sec. IV.

As we will see there are values of the coupling strength
where several classical solutions exist with comparable
Boltzmann weight. These give rise to a bifurcation point in
the ground state. Also since the potential term in �4� is posi-
tive, there are values of G for which the actual ground state
breaks the rotational symmetry around the direction of the
applied force. The associated goldstone modes can be ex-
cluded by explicitly fixing a direction.

III. EULER BUCKLING

In this paper we consider as in Ref. �26� a molecule that
has its two ends clamped at fixed orientations 	�0�=	�1�
=��0�=��1�=0, while the ends can freely move in the plane
perpendicular to the force. In the zero fluctuation parameter
limit the partition function gets only contributions from the
classical paths, which minimize the energy. The Euler-
Lagrange equations are

�̈�t� = − cos ��t�sin ��t�	̇2�t� − G2 sin ��t�cos 	�t� , �8�

d

dt
�cos2 ��t�	̇�t�� = − G2 cos ��t�sin 	�t� . �9�

These equations can be integrated resulting in two classes of
solutions: the straight rod solution

��t� = 0, 	�t� = 0, �10�

and the buckling solutions that read by choosing ��t�=0,

	̇2�t� = 2G2�cos 	�t� − 1 + 2m�, m � �0.1�⇒ �11�

	�t� = 2 arcsin��m sn�tG�m��⇒ �12�

cos 	�t� = 1 − 2m sn2�tG�m� . �13�

Here sn�¯� is an elliptic Jacobi function �32�. Solutions with
m
1 are solutions containing loops. They have a higher
energy in our case. Using the periodicity properties of sn we
find for buckling solutions with the boundary condition
	�1�=0 the following relation between m and F:

G = L�F
A

= 2nK�m�, n � Z . �14�

Here K�m� is the complete elliptic integral of the first kind.
We will label the solutions with n, 	0 corresponding to the
straight rod. Since K�m� is a monotonously increasing func-
tion of m we find a smallest force that permits a given buck-
ling solution �33�,

Fc = G2 A

L2 = n24K�0�2

L2 A = n2�2

L2 A . �15�

It is straightforward to calculate the end-to-end distance
along the z axis by integrating the solution along the chain.
The result is

X = L�
0

1

dt cos 	�t� = L�2E�m�
K�m�

− 1� . �16�

The value of the extension becomes negative under large
enough compression. In practice we will be interested in the
region where the force is small enough that the WLC model
is still reasonable. It is easy to see from the buckling solution
�13� that the compressed chain will be a monotone curve as
long as m�1 /2. For higher values of m the chain forms an
s-shaped curve.

The energy of the buckling solution is found from �3� to
be

En�m� =
G2

h
�2

X

L
+ 2m − 1� =

4n2K2�m�
h

�4
E�m�
K�m�

+ 2m − 3�
�17�

with m depending on the force, F, and n through �14�. E�m�
is the complete elliptic integral of the second kind.

When comparing the energy of the buckled state with the
straight rod configuration we notice that the buckled state is
always energetically favorable once it is allowed by �15�.
This transition from straight rod to the buckled state is re-
ferred to as the Euler transition. When no other constraints
are imposed on the solutions the first buckling solution, n
=1, will be the favorable solution under compression once
the first critical value for the force has been reached �33�.
When the end of the chain is constrained to be fixed in the
origin of the YZ plane, making both ends fixed on the z axis,
it is the one loop solution that, when there are no constraints
on the rotation of the chain around its axes, is the favorable
solution. We will for the rest of this paper restrict ourselves
to the unconstrained case.

IV. SEMICLASSICAL BUCKLING

For finite values of the fluctuation parameter thermal fluc-
tuations must be taken into account in the evaluation of the
partition function. We will write the coordinates as

��t� = �n�t� + ���t� = ���t�, 	�t� = 	n�t� + �	�t� . �18�

Here the index n�Z differentiates between the classical so-
lutions �12�–�14�, the straight solution corresponding to n
=0. By plugging these relations into the expression for the
total energy �including the measure term� we find order by
order

E���t�,	�t�� + Em���t��

=
1

h
�

0

1

dt�1

2
	̇n

2 + G2 cos 	n�
+

1

h
�

0

1

dt�	̇n�	̇ − G2 sin 	n�	�
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+
1

h
�

0

1

dt�1

2
��	̇�2 −

1

2
G2 cos 	n��	�2

+
1

2
���̇�2 −

1

2
�G2 cos 	n + 	̇n

2�����2� + ¯ . �19�

The first term is just the energy as given by �17� for the
buckle solutions. The second term is zero when we look at
chains with fixed boundary conditions �Dirichlet boundary
conditions�. The third term represents the lowest order that
accounts for thermal fluctuations and is in the focus of our
attention. Note that the measure term will only show up in
the quartic order fluctuations �of order h�, since for the
Gaussian distribution the fluctuations are of order �h.

A. Harmonic fluctuations below the Euler transition

We first consider the regime below the critical force Fc,
G�Gc=�, where the classical solution is the straight rod.
The partition function to lowest order around this ground
state has the simple form

Z = exp�− G2/h� � D���,�	�

�exp�−
1

h
�

0

1

dt�1

2
���̇�2 −

1

2
G2����2�	

�exp�−
1

h
�

0

1

dt�1

2
��	̇�2 −

1

2
G2��	�2�	 . �20�

The resulting path integral is the product of the partition
sums, in Euclidean time, of two independent harmonic oscil-
lators with a frequency squared of −G2. When we consider
first the azimuth, 	, contribution it is in fact a harmonic
oscillator on the circle where angles that differ a full period
are equivalent. The path integral in that case can be ex-
pressed as a sum over the harmonic oscillator on the real line
by summing over all equivalent end points �see, e.g., �31�,
Chap. 6�:

Zcircle�	�0� = 0,	�1� = 0�

= 

n=−�

+�

Zline�	�0� = 0,	�1� = 2�n�

=
1

�2�h
� G

sin G
�3�0,e−2�2G cot G/h� . �21�

The elliptic � function �3�0,q� �34� diverges for G=� /2,
only one-half the critical force, which seems to be odd at first
sight. The reason behind this is that for G=� /2 all equiva-
lent paths have the same weight; there is no cost in increas-
ing the winding number. As a first correction we note that
higher order corrections considerably temper the potential
abyss for larger fluctuations in which case we can neglect the
contributions from the winding by taking the domain of 	 to
be the real line. This results in an improved estimate for the
partition sum

Z	 =
1

�2�h
� G

sin G
. �22�

The same kind of reasoning holds for the polar angle.
Here we do not have winding, but formally an oscillator in a
box. Since we again assume the fluctuations to be small it is
possible to extend the domain to the real axis. Although we
have the equivalence �� ,	����−� ,	+�� again the results
do not hold for larger fluctuations that have a weight that
does differ substantially from zero. So by taking the polar
angle also covering the real line we are only overcounting
configurations that do not contribute to the path integral. The
final result is then

Z = exp�− G2/h�
1

2�h

G

sin G
. �23�

This partition sum diverges at the caustics, G=�. Note that
this is exactly the critical point for Euler buckling. Here it is
caused by the harmonic potential being just strong enough to
cancel the kinetic term �i.e., the bending energy�, making
large fluctuations favorable and thus invalidating the har-
monic approximation. Unlike the �3-function divergence
here we cannot just dismiss these larger fluctuations, since
they do not come from a topological disconnected region in
configuration space and as such are indeed an indication that
the ground state is suffering from an instability.

The force extension behavior is readily obtained, as an
approximation, from the partition function

X�F� = −
1

�Z

�Z

�F
= L�1 −

h

2G2 �1 − G cot G�� . �24�

This expression diverges again at the Euler transition.
Since we have approximated the total extension X
=L�dt cos � cos 	 to quadratic order in the fluctuations
around the classical solution, the deviation of the above ex-
pression for the extension from the straight rod actually
gives, up to a factor L, the variance of the fluctuations aver-
aged over the chain. When this variance is large not only the
harmonic approximation to the partition sum breaks but the
force extension approximation breaks down as well. From
these considerations we expect the above force-extension re-
lation to hold as long as �−G
h /2�. From this observation
one is tempted to conclude that the rod will start to buckle at
a force shifted downward from the Euler transition force fol-
lowing a scaling law for small h of

Fc � Fc
�0��1 − Ch� �25�

with C a constant of order 1. This is a well-known result
from Ref. �26�. We will have to adjust this picture when
taking higher order terms into account, as we will see in Sec.
V, because the linear scaling tells us only something about
the validity of the quadratic approximation.

For small forces, G�1, we find from �24� for the exten-
sion of the chain
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X�F� � L�1 −
h

6
�1 +

G2

15
�	 . �26�

For G=0 this is the extension of the chain shortened by
thermal fluctuations alone.

B. Harmonic fluctuations above the Euler transition

The harmonic correction to the classical solution has
again the form of a harmonic oscillator, but now with a time-
dependent oscillator frequency. The azimuth and polar part
of the fluctuation factor again decouple,

Z = e−E1�m�F	F�. �27�

The classical solution is given by �17�. In principle we
should sum over all classical buckling solutions that are al-
lowed at a given force. The energy difference is nonetheless
big enough that we can neglect the contribution of higher
buckled configurations.

The azimuth contribution has the form �after partial inte-
gration�

F	 =� D��	�exp�−
1

2h
�

0

1

dt�	T̂	�	� �28�

with the harmonic fluctuation operator given by

T̂	 = −
d2

dt2 − G2 cos 	1�t� , �29�

where 	1�t� is the classical n=1 buckling solution. The fluc-
tuation factor can be written using Gaussian integration in
terms of functional determinants as

F	 =
1

�2�h�det�−
d2

dt2�
det�T̂	�

�
1/2

. �30�

The determinant of the fluctuation operator can be calculated
using the Gelfand-Yaglom formula �31�. To do so we must
find a solution D	�t� of the differential equation

T̂	D	�t� = 0 �31�

with boundary conditions D	�0�=0 and Ḋ	�0�=1. The deter-

minant det�T̂	� is then given by D	�1�. Changing variables
to x=Gt the differential equation has the form of a Lamé
equation �35� �the Laplacian in ellipsoidal coordinates�

d2y�x�
dx2 + �1 − 2m sn2�x�m��y�x� = 0. �32�

With the given coefficients there exists one double periodic
solution �also called Lamé polynomial� given by a Jacobi
elliptic function

y�t� = cn�Gt� . �33�

This solution does not have the right boundary conditions,
but using D’Alemberts construction �31�, which gives an-
other independent solution, we can construct the solution
with the right boundary conditions,

D	�t� = y�t�y�0��
0

t dt�

y2�t��

=
sn�Gt�m�dn�Gt�m� − E�Gt�m�cn�Gt�m�

G�1 − m�
+ t cn�Gt�m� .

�34�

Here we adhere to the notation for the elliptic integral of the
second kind as used in Abramowitz �32�, see also Appendix
A. The function dn is the last Jacobi elliptic function we
need.

With this solution to the Lamé equation we find the fluc-
tuation determinant as

D	 ª

det�T̂	�

det�−
d2

dt2� = D	�1�

=
sn�G�m�dn�G�m� − E�G�m�cn�G�m�

G�1 − m�
+ cn�G�m� .

�35�

Now we can make use of the relation G=2K�m� �14� to
simplify this result to

D	 =
E�m� − �1 − m�K�m�

�1 − m�K�m�
�36�

from which we obtain the fluctuation factor

F	 =� �1 − m�K�m�
2�h�E�m� − �1 − m�K�m��

. �37�

Since for small m, E�m�− �1−m�K�m��m� /4, the fluctua-
tion factor diverges at the Euler transition. This is not too
surprising since in the two-dimensional configuration, there
are with forces close to the buckling transition three classical
solutions with comparable energies with only small barriers
in between, allowing larger thermal fluctuations than admis-
sible for a harmonic approximation. Would we forbid out-of-
plane fluctuations the picture is that fluctuations would grow
with increasing force just below the Euler transition. Just
above the Euler transition the chain will fluctuate between
the two possible buckled configurations, analogous to quan-
tum tunneling. Finally the buckling will stabilize with in-
creasing force to one of the two configurations.

We now come to the out-of-plane fluctuations. The fluc-
tuation determinants can again be calculated using the
Gelfand-Yaglom method. We are now looking for a solution
of �with x=Gt�

d2y�x�
dx2 + �1 + 4m − 6m sn2�x�m��y�x� = 0. �38�

This happens to be again a Lamé equation with the right
coefficients to have a double periodic Lamé polynomial as
solution,
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y0�x� = sn�x�dn�x� . �39�

Since y0�0�=0 we immediately find for the fluctuation deter-
minant

D� ª
det�T̂��

det�−
d2

dt2� =
sn�G�dn�G�

G
� 0 �40�

and the partition sum diverges. This is caused by the global
rotations around the force direction connecting a continuum
of ground states. The buckling solution �13� was chosen to
be lying in the xy plane. Since the energy �as well as the path
integral measure� is invariant under rotations around the x
axis we have a continuum of buckling solutions. We can
make use of this symmetry by integrating only over paths
where the angle � averages along the chain to zero and then
integrating separately over the rotation around the x axis.
This can be done in a consistent way using the Faddeev-
Popov �FP� method �36� developed to fix internal symme-
tries in quantum field theory. A clockwise rotation of the
chain by an angle � around the x axis changes the coordi-
nates on the sphere to

cos � sin 	 → cos����sin�	��

= cos � sin 	 cos � + sin � sin � ,

sin � → sin���� = − cos � sin 	 sin � + sin � cos � .

�41�

Now we want to fix the average of the � angle, �̄
ª�0

1dt��t�, to zero. We define the FP “determinant” through

�FP��,	��
0

2�

d����̄�� = 1, �42�

where the argument of the � function is the average angle of
the � rotated chain. Inserting “1” into the partition sum �5�
results in

Z = �
0

2�

d�� D2��,	��g����FP���̄��e−E���t�,	�t��

= 2�� D2��,	��g����FP���̄�e−E���t�,	�t��. �43�

In the last step we have first performed a trivial change of
variable of integration and then made use of the invariance
under rotation of the energy and of the path integral measure.
In fact just the invariance of the combination of the measure
and the Boltzmann factor would have been enough. The FP
determinant can be found from the definition �42�,

�FP��,	� = ��
0

2�

d����̄���−1

= ��
0

1

dt sin 	�t�� . �44�

Since we are interested in small thermal fluctuations around
the classical solution we can assume the fluctuations to be
such that �dt sin 	�t�
0 for all relevant paths. This appar-
ently does not hold anymore close to the bifurcation point.

Defining Z0 to be the partition sum without the FP term, but
including the angle fixing � function, the lowest order con-
tribution of the FP term to the partition sum is

Z = �
0

1

dt�sin 	�t��Z0 � �
0

1

dt sin 	1�t�Z0

= 2�m�
0

1

y0�Gt�Z0 ¬ ZFPZ0. �45�

The last step follows from the definition of 	1�t� �13�. We
now fix the global polar angle in the polar fluctuation factor

F� ª 2�ZFP� D��������̄�exp�−
1

2h
�

0

1

dt��T̂���� .

�46�

To see how this procedure formally gets rid of the divergence
we note first that the fluctuation operator, as defined on the
square integrable functions on �0,1� that are zero on the
boundary, is symmetric and so we can find a real orthonor-
mal basis �ỹn� that diagonalizes the operator. Using this basis
we write ���t�=
n=0

� xnỹn�Gt�. The normalized zero mode
eigenfunction is given by ỹ0�Gt�= ��dty0

2�Gt��−1/2y0�Gt� and
the eigenvalues are written as �n, e.g., �0=0. We now inte-
grate separately over the zero mode,

F� =
2�ZFP

�2�h
��

n�0
� dxn

�2�h
� � dx0

�2�h
��


n

xn�
0

1

ỹn�t��
�exp�−

1

2h


n�1

xn
2�n�

=
�2�ZFP

�h��
0

1

dtỹ0�Gt��
1

�2�h
��

n�0
� dxn

�2�h
�

�exp�−
1

2h


n�1

xn
2�n�

=

2�2m��
0

1

dty0
2�Gt�

�h
lim
�→0

� �0
�

2�hD�
� . �47�

In the last step we regularized the determinant by adding a
small linear term

T̂�
�
ª T̂� + �1̂ �48�

in effect shifting all eigenvalues �n by � to the new values
�n

� =�n+�. The resulting determinant is then, in first order in
�, � times the determinant of the reduced operator defined on
the orthogonal complement of the zero mode eigenvector,
since all other linear terms contain the zero mode eigenvalue.
The resulting homogeneous differential equation has been
solved for a similar case in �37�. The somewhat technical
calculation is done in Appendix B. The resulting determinant
is
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D�
� =

�

K�m�3m
��1 − m�K�m� − �1 − 2m�E�m�� . �49�

Finally the integral over the zero mode squared is given by

��
0

1

dty0
2�t��1/2

= �2

3
��1 − m�K�m� − �1 − 2m�E�m���1/2

.

�50�

Combining �37�, �47�, �49�, and �50� we find for the partition
sum

Z = e−E1
2mK�m�

�
� �1 − m�

h3�E�m� − �1 − m�K�m��
. �51�

It is noteworthy that the partition sum does not diverge at the
Euler transition, but goes to zero. By approximating the
Faddeev-Popov determinant by its classical value we are in
fact underestimating the amount of configurations the closer
we come to the bifurcation point. The force extension cor-
rections to the classical force extension curve X0�F�, Eq.
�16�, defined as X=X0+X	+X�, with the subscript labeling
the fluctuation part that causes the extension change, are
given by

X	 � −
1

�F	

�F	

�F

= hL
m�1 − m�

16K�m��E�m� − �1 − m�K�m��

�� K�m�
E�m� − �1 − m�K�m�

−
E�m� − �1 + m�K�m�

m�1 − m�K�m� � ,

X� � −
1

�F�

�F�

�F
= − hL

�E�m� + 3�1 − m�K�m��
16K2�m��E�m� − �1 − m�K�m��

.

�52�

These formulas are not too illuminating. Plotting the two
corrections �Fig. 2� reveals that the corrections to the exten-
sion caused by thermal fluctuations have an opposite sign.
The out-of-plane fluctuations make the chain slightly shorter
than the classical solution, as is to be expected. The in-plane

fluctuations have the opposite effect. This can be understood
as the extension change by fluctuations in the straight rod
direction to be stronger than fluctuations away from the rod
solution.

The total extension again diverges when approaching the
bifurcation point, both for the X	 and X� parts separately. For
the azimuth part the reason behind this is the same as in the
straight rod case: near the bifurcation point fluctuations in-
crease because the two classical solutions, of positive and
negative angles, are close to each other and as such a qua-
dratic approximation to the force term is not enough. For the
polar angle this is not the case since we integrated out the
fluctuations to equivalent states, but there the FP term �45� is
underestimated: as long as the deviation of the expectation
value of the end point of the chain �proportional to the FP
term� from the straight rod is larger than its fluctuations we
can expect that our results hold. Close to the bifurcation
point, however, we are not allowed to drop the absolute
value sign by going to Eq. �45� and find a lower bound of the
FP term in the order of the standard deviation of the end
point.

For small m, approaching the bifurcation point, we find
from �52�,

X	 =
hL

�2m
�1 −

m

2
+ O�m2�� ,

X� = −
hL

�2m
�2 −

5m

2
+ O�m2�� . �53�

Like below buckling the extension diverges because we
make an approximation by taking the extension to be
− 1

��F ln Z. This is not exact when approximating the poten-
tial. For the same reasons as below buckling we can expect
the results not to hold for large relative extension shifts.

V. QUARTIC ORDER

Below buckling it is fairly simple to get a good estimate
of the force extension curve up to the Euler transition by
taking higher order fluctuations into account. Since it is the
lowest mode that is responsible for the blowing up of the
partition sum, approaching the transition, we can signifi-
cantly improve the calculations by including the quartic term
for this mode. Quartic terms containing other modes hardly
improve upon this. In two dimensions the corrected partition
sum is

Z =
e−G2/h

�2�h
�G��2 − G2�

sin G

��
−�

� dx
�2�h

exp�−
1

2h
�x2��2 − G2� + x4G2

8
�	

=
e−G2/h

�2�h
�G��2 − G2�

sin G

�

2���h
e�4/2�2

K1/4� �4

2�2� �54�

with
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G2
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FIG. 2. Relative extension shift from Eqs. �52� with h=L=1.
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� =
G

4�h
, � =

��2 − G2

2�h
. �55�

From which we find for the force extension relation

X� = L�1 −
h

2G� �2 − 3G2

2G��2 − G2�
−

cot G

2
+

1

�

d�

dG
−

1

�

d�

dG

+�2 −

K3/4� �4

2�2� + K5/4� �4

2�2�
K1/4� �4

2�2� � �4

2�2

�� 2

�

d�

dG
−

1

�

d�

dG
��� . �56�

These solutions can be continued above the transition, but
they start to deviate fast from the exact values. The more
practical use of these calculations is to make an estimate of
the forces a rod can endure, before it collapses. Assuming
h�1, so that we are close to a buckling type of behavior, we
can recognize two separate asymptotic regions of behavior,
depending on the argument of the modified Bessel functions
in �56�.

�2−G2�G�h, we find as asymptotic behavior

X � L�1 −
2�2

��1/4�2
�h + � 2

�
+

2�2��− 1/4�
��1/4�3 + O��h��

��� − G� + O��� − G�2�	 , �57�

i.e., X exhibits a finite negative slope. The decrease of the
extension with increasing force is substantial. The polymer
can be considered to buckle.

�2−G2
G�h, in this region the decrease of the extension
is of order h, the force extension curve being almost flat.
There is no buckling yet.

The crossover region, and thus the region where one
could speak of a buckling transition, is where this argument
is of order unity. It is of course not possible to pinpoint a
precise transition point, but the scaling of the transition shift
follows from these observations: the force where the insta-
bility appears is shifted by thermal fluctuations according to

Fc � Fc
�0��1 − C�h� , �58�

with C of order unity. The results for three different values of
h are drawn in Fig. 3 together with the corresponding
reduced transition forces using C=1.

We next consider the three-dimensional �3D� case. The
contribution from the � part alone is the same as for the 	
part, which would result in a doubling of the difference from
the straight rod. But now we also have a term mixing the two
lowest modes. The fluctuation part of the partition sum is
�apart from a constant�

0

50

X

0 5 10 15 20
G2

2d Simulation
3d Simulation
Classic
2d Gaussian
2d Quartic
3d Gaussian
3d Quartic
3dQuartic Series

FIG. 4. Comparison of the analytical force extension with simu-
lations for L=49 and h=0.8. The unit of length is the bond length in
the simulation.
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FIG. 3. Force extension in 2D for h=0.01, 0.05, and 0.1. The corresponding reduced transition forces from Eq. �58�, with C=1, are
shown by the three short dashed vertical lines.
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Zfl =
G��2 − G2�

sin G
�

−�

�

dx�
−�

�

dz exp�−
1

2h
�x2�1 + x4G2

8

+ z2�1 + z4G2

8
+ x2z2�3G2

4
−

�2

2
�	 . �59�

As a first approximation we can use the expectation value of
the square of one of the modes, resulting in a modified � for
the other mode given by

�̄ =
1

2�h
��2 − G2 + �z2�

�3G2 − 2�2�
4

, �60�

with

�z2� =�K3/4� ��2 − G2�2

2hG2 � + K5/4� ��2 − G2�2

2hG2 �
2K1/4� ��2 − G2�2

2hG2 � − 1�
�

2��2 − G2�
G2 −

h

�2 − G2 . �61�

The resulting extension is then given by

X = X� + X�̄ − L . �62�

This approximation slightly overestimates the contribution of
the mixing term close to the transition, where the behavior is
far from Gaussian. A better result can be obtained by treating
the mixing term as a perturbation and expanding 60. The
resulting series expansion one obtains is

Zfl =
G��2 − G2�

sin G


n=0

�
1

n!
�−

3G2 − 2�2

8h
�n� ���2n + 1

4
���2n + 1

4
,
1

2
,
�4

�2 � − 2�2��2n + 3

4
���2n + 3

4
,
3

2
,
�4

�2 �
2��2n+3�/2 �

2

, �63�

with ��x ,y ,z� representing Kummer’s function �confluent
hypergeometric function�. This series converges relatively
fast just below the Euler transition and one can get a good
approximation of the extension below the transition force.
For practical purposes the first approximation is good
enough to characterize the transition shift. It scales with in-
creasing length in the same way as the two-dimensional �2D�
case. We will next compare the predictions of the force-
extension relations, Eqs. �24�, �52�, �57�, �62�, and �63�, with
simulations.

VI. COMPARISON WITH THE SIMULATION

Molecular dynamics simulations coupled to a Langevin
thermostat were performed to simulate the buckling of a
semiflexible polymer at finite temperature. The polymer was
modeled with a bead spring model of length 50 beads
�49 bond lengths�. The beads were connected via harmonic
bonds with stiffness constant 100kBT. Additional simulations
with FENE potential �38,39� instead of harmonic gave quali-
tatively similar results �not shown�. A cosine angular energy
term was added to the model to obtain a semiflexible chain
with persistence length comparable to the chain length. The
backbone stretching parameters were chosen such that fluc-
tuations of the bond length are negligible compared to the
bending fluctuations. Therefore, the inextensible wormlike
chain model is expected to be a good approximation to the
simulated chain.

The simulations and theoretical calculations are plotted in
Fig. 4. The value of h was taken rather high in order to have
a more pronounced fluctuation contribution. The length scale

is chosen such that the bond length in the simulation model
is 1. The 3D quartic curve was calculated using the modified
quartic term.

The semiclassical results are in good agreement with the
simulation data in the region where a semiclassical approxi-
mation is expected to be valid. It is noteworthy that the in-
crease in extension as predicted by the calculations is indeed
the same as observed in the simulation. In 2D the quartic
corrections below buckling are seen to be, even for relatively
large values of h, in good agreement with simulations. In 3D,
using the simplified approach of modifying the quartic inter-
action to account for the mode mixing �62� the reliability of
the calculations close to the Euler transition decreases, al-
though the qualitative behavior seems to be good enough for
practical purposes. Better results are seen if the perturbation
expansion �63� is used. The 3D quartic series curve was cal-
culated using this expansion with the first 20 terms. Note
though that this last calculation was stopped slightly below
the transition force, since it does not converge at the transi-
tion.

The effect of the bond length not being fixed is indeed
small enough compared to the thermal fluctuations. The error
bars are caused by the finite number of simulation rounds.

VII. DISCUSSION

The parameter that determines whether a buckling transi-
tion is present is the ratio h of length and persistence length
of the wormlike chain. One can roughly say that a buckling
transition appears for ratios clearly smaller than 1. But it is
crucial that one takes into account the shift of the apparent
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transition when a force is extracted from the onset of buck-
ling. To illustrate the importance of thermal fluctuations we
will discuss the influence they have in interpreting data from
recent experiments with important biopolymers. Table I
shows the persistence length of the three polymers, ds-DNA,
actin, and microtubule together with some of the typical
lengths and associated transition forces. The shifted transi-
tion force is calculated from Eq. �58� with C=1.

The DNA tetraheda synthesized by Goodman et al. �28�
have sides made of double stranded DNA of a length below
10 nm. As can be read from the table, for a length of 10 nm,
the force that a structure can endure is strongly reduced by
thermal fluctuations. This must be taken into account when
designing nanostructures based on DNA.

F-actin is one of the main building blocks of the cyto-
skeleton. It has a persistence length in the order of 9–18 �m
�40� �the higher value is in the presence of the toxin Phalloi-
din�. Actin can produce forces through polymerization. The
maximum force it can produce, the stall force, was deter-
mined, by Kovar et al. �24�, by measuring the shortest length
of actin that showed buckling, when growing in between two
fixed points. The lengths where this was observed are given
in rows 2 and 3 of the table. The force calculation based on
classical buckling considerably overestimates the force
needed to buckle for the measured length since it does not
take the thermal fluctuations into account.

The other important structures in the cytoskeleton are mi-
crotubules, hollow highly regular assemblies of filaments,
having persistence lengths in the order of several mm �40�,
the precise value depending on several factors, like the
growth speed �23� and perhaps the contour length �41�. In
buckling experiments by Janson et al. �23�, where the growth
rate dependence on the applied force was studied, the lengths
were such that in this case the shift by thermal fluctuations is
negligible.

Nevertheless, the increase of thermal fluctuations when
approaching buckling can also be observed in this case.
These thermal fluctuations increase sharply just before buck-
ling, followed by a strong damping of these fluctuations with
increasing length �and thus increase of buckling� of the mi-
crotubule. Both these effects follow from our calculations.

The damping of the fluctuations after the onset of buck-
ling can be inferred from the approach of the semiclassical
solution toward the “zero temperature” classical solution.
Below buckling the end-point fluctuations increase from
�y2��L2h /3, the classic result which follows from �26�, for a
chain with one free end to �y2�
0.2L2�h for an applied
force corresponding to the Euler transition, as follows from
�57�. It should be noted that the geometry of the setup in

those experiments is not immediately comparable to our cal-
culations since the microtubules in those experiments have
one end of the chain more or less hinged in a fixed position,
the resulting buckling force can be up to a factor 4 larger
than in our case. Qualitatively though the results are compa-
rable and for typical values of a persistence length of 3.3 mm
and a chain length of 20 �m we expect the mean fluctuation
of the end point to be amplified by a factor 
7. This indeed
seems to be approximately the case, although a precise
analysis of their measurements is outside of the scope of this
paper.

Finally, a remarkable result of our calculations is the in-
crease of end-to-end distance by thermal fluctuations of the
buckled polymers, especially in two dimensions. In dense
networks of actin filaments confined to the cell cortex, the
buckling is approximately two dimensional. The lengthening
of the buckled polymer causes then an apparent stiffening of
the compressed network by the fluctuations.
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APPENDIX A: ELLIPTIC FUNCTIONS

The elliptic integrals and the Jacobi elliptic functions are
functions of two variables and, in the case of elliptic inte-
grals of the third kind, three variables. There are different
equivalent choices of pairs and the choice generally depends
on the situation at hand. See also �32,34�.

Throughout this paper we use the Jacobi form �with one
exception�. In that form the variables are called the argu-
ment, x, and the parameter, m� �0,1�. In the literature the
latter is sometimes replaced by the modulus, k=�m. The two
variables are separated by a vertical line like in E�x �m�. An
alternative form is the trigonometric form where the vari-
ables are the Jacobi amplitude, 	=am�x �m� and the modulus
� defined through sin2���ªm. In that case the variables are
separated by a backslash. So in the notation that we use we
have the elliptic integrals of the first, second, and third form
written as

F�	�m� = F�	 \ ��, E�x�m� = E�	 \ �� ,

�A1�
��n;x�m� = ��n;	 \ �� .

The integral of the first kind is an exception since it is in fact
the inverse of the amplitude function and so F�x �m� is

TABLE I. Reduction of the force needed to buckle for some biopolymers with finite length. The reduction is calculated from Eq. �58�
with C=1.

lP L h Fc
�0� Fc

DNA 50 nm 10 nm 0.2 21 pN 11 pN

Actin 9 �m 1.2 �m 0.13 0.26 pN 0.16 pN

Actin with Phalloidin 18 �m 0.75 �m 0.04 1.3 pN 1.0 pN

Microtubule 3.3 mm 9.4 �m 0.028 1.5 pN 1.4 pN
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identical to x. The complete integral of the first kind is
defined as the value of F evaluated at an amplitude of � /2:
K�m�ªF�� /2 �m�. The same holds for the other complete
integrals, but now we can make use of the fact that
am−1�� /2 �m�=K�m� and so

E�m� ª E„K�m��m…, ��n�m� ª �„n;K�m��m… . �A2�

The double periodic Jacobian elliptic functions are defined as

sn�x�m� ª sin„am�x�m�…, cn�x�m� ª cos„am�x�m�… ,

�A3�

dn�x�m� ª
d

dx
am�x�m� .

APPENDIX B: GENERALIZED LAMÉ
EQUATION [37]

We are looking for a solution of the generalized Lamé
equation,

ÿ + p�x�y = 0, �B1�

where p�x�=1+4m−�−6m sn2�x� and we are especially in-
terested in the small � limit. The product M�x�=y1�x�y2�x� of
two solutions satisfies the third-order differential equation

M� + 4pṀ + 2ṗM = 0. �B2�

We will now construct a solution of this last equation as a
series in sn�x�. Write M =
ns0an snn�x�. Substitution leads to
the following relation between the coefficients:

anm�n3 + 3n2 − 22n − 24� + an+2�4�1 + 4m − ���n + 2�

− �n + 2�3�1 + m�� + an+4�n + 4��n + 3��n + 2� = 0.

�B3�

To get a finite number of terms, the highest power must be 4
and we find as solution

M�x� = 9m2 sn4�x� − 3m�3 + ��sn2�x� + 3��1 − m� + �2.

�B4�

Suppose y1�x� is one of the two solutions of �B1� that make
up M. We can use the D’Alembert construction to get an-
other independent solution so that y2 can be written as �the
Wronskian is constant�

y2�x� = By1�x� + Cy1�x��
0

x

dx�
1

y1
2�x��

. �B5�

Using the definition of M�x�, and assuming M�x� to be posi-
tive, we can express y�x� in terms of M�x� as

y = �M�x�exp�− �
0

x

dx�
C�m�

2M�x��� . �B6�

Inserting this function into the Lamé equation results in

2M�x�M̈�x� − Ṁ2�x� + C2 + 4�1 + 4m − �

− 6m sn2�x�m��M2�x� = 0 �B7�

and the C�m� is found by inserting the solution for M�x�
�B4�,

C�m� = ± 2����3m�3 + �� − ��1 + 4m − ����3�1 − m� + ����3�1 − m� + �� � ± 6���3m�1 − m� . �B8�

The integrand in the exponential of �B6� has poles at

p± ª
3 + � ± �9 − 6��1 − 2m� − 3�2

6m

�
3 + � ± �3 − ��1 − 2m��

6m
.

Since sn2�x�� �0,1�, by choosing ��0 we can force the in-
tegrand to be regular for the parameter m� �0,1�. C�m�, on
the other hand, is now imaginary, so that we must look at
linear combinations of the two solutions for a real valued
solution of the homogeneous equation. Noting that M�x� is
now strictly negative we find as the solution with the proper
boundary conditions

y�x� =
2�− M�0�

G�m��C�m��
�− M�x� sin�− �C�m��

2
�

0

x dx�

M�x��� .

�B9�

We will now evaluate the integral appearing in the sinus

�
0

x dx�

M�x��
=

− 1

9m2�p+ − p−�p+
�

0

x dx�

1 − 1/p+ sn2�x��m�

+
1

9m2�p+ − p−�p−
�

0

x dx�

1 − 1/p− sn2�x��m�

=
− 1

9m2�p+ − p−�p+
��1/p+;x�m�

+
1

9m2�p+ − p−�p−
��1/p−;x�m� . �B10�

The elliptic integral of the third kind, ��n ;x �m�, has a be-
havior that depends on the value of the characteristic n �32�.
In our case we have characteristics 1 / p+�m�1−�m /3�
� �m ,1� and 1 / p−�3m / ���1−m���0 both corresponding to
so-called circular cases.

The functional determinant is then given by
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D�
� = y„2K�m�…

=
− M�0�

K�m��C�m�
sin� �C�m��

9m2�p+ − p−�

�� 1

p+
��1/p+�m� −

1

p−
��1/p−�m��	 , �B11�

where we introduced the complete elliptic integral of the
third kind, defined as usual from the incomplete one,

��n�m� ª �„n;K�m��m… = 1
2�„n;2K�m��m… . �B12�

The integral with the 1 / p+ characteristic can be easily evalu-
ated by expanding around characteristic m, leading to

��1/p+�m� = �
0

K�m� dx

dn2�x�m�
+ O��� �

1

1 − m
E�m� .

�B13�

Note that we only need up to first order in � and the factor
multiplying the sinus in Eq. �B11� goes as M�0���.

The integral with the negative characteristic can be writ-
ten as an elliptic integral with positive characteristic using
the following definition �32�:

N− ª
1 − p−m

1 − p−
� 1 + �

�1 − m�2

3m
�B14�

resulting in

��1/p−�m� =
− p−�1 − m�

�1 − p−��1 − mp−�
��N−�m� −

p−m

1 − p−m
K�m�

� − p−�1 − m���N−�m� − p−mK�m� . �B15�

The characteristic N− is less trivial, since we cannot ex-
pand around characteristic 1, where the elliptic integral di-
verges. We can express the integral in terms of yet another
elliptic function, Heuman’s lambda function �0�z �m�, as �32�

��N−�m� = K�m� + 1
2���1 − �0�z�m�� , �B16�

where

� =� N

�1 − N��N − m�
=

1
�− �

�� 3m

�1 − m�3 + O���� ,

z = sn−1��1 − N

1 − m
� = �− ����1 − m�

3m
+ O���� .

�B17�

The lambda function we can express, again following Ref.
�32�, in other elliptic functions as

�0�z�m� =
2

�
„K�m�E�z�1 − m�

− „K�m� − E�m�…F„am�z��1 − m…… . �B18�

Using the small argument expansion of the elliptic integrals
E�z �1−m��z we find

��N−�m� = K�m� −
1

1 − m
E�m� +

�

2�1 − m��− �
� 3m

1 − m

+ O��− �� . �B19�

Finally we find for the functional determinant

D�
� � −

3��1 − m�
K�m��C�m�

sin� �C�m��
9m�1 − m�

�K�m��1 − m�

− �1 − 2m�E�m�� + ��
�

�

K�m�3m
�K�m��1 − m� − �1 − 2m�E�m�� �B20�

which is Eq. �49�
Note added in Proof. We recently became aware of the

work by Lee et al. �42�, in which complementary topics of
the same subject are considered.
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